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Quotient spaces and critical points
of invariant functions for C*-actions

By James Montaldi at Nice and Duco van Straten at Kaiserslautern

Introduction

If an analytic function germ f on X = C"*! has an isolated critical point at 0, then
under any 1-parameter deformation f; of f this critical point decomposes into finitely many
(simpler) critical points. For a generic deformation, the simpler critical points are all non-
degenerate and in this case the number of critical points can be computed algebraically as
the dimension of the Jacobian algebra, dim.(0y/Jf), where Jf is the Jacobian ideal
generated by the partial derivatives of f. The essential reasons for this are that the partial
derivatives (0f/ 0x;) form a regular sequence, and that for a non-degenerate critical point the
Jacobian algebra has dimension 1.

Consider now a linear action of a finite group G on X and let f be an invariant func-
tion with an isolated critical point at 0. If f, is an invariant deformation of f, then G acts
by permuting the critical points of f,. Moreover, if the critical points are non-degenerate
(which is the case generically if the action is real) then the associated permutation
representation of G is isomorphic to the representation of G on (0x/Jf). Consequently, the
number of group orbits of critical points is equal to dim,[0y/Jf 1%, (where [M]¢ denotes
the fixed point space of the G-space M). If the critical points in the deformation remain
degenerate, then the permutation representation must be counted with appropriate
multiplicities. For further details see [29] and [21].

If G is an infinite (reductive) group then invariant critical points are no longer isolated,
and (Oy/Jf) is accordingly no longer finite dimensional. Furthermore, [@y/Jf]¢, which is
finite dimensional, does not behave well in a deformation: its dimension is in general only
upper semicontinuous. Mark Roberts has conjectured that for complexifications of
representations of compact Lie groups on B"*! this number is well behaved and determines
the multiplicity of a degenerate invariant critical point [7].

An alternative approach is to use differential forms. If f has an isolated critical point,
then the complex (£, df A) of differential forms on X
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is exact except for H**1(f):= H"*1(Qy, df A) = Q2" '/ df A Q}. The complex is therefore
a free resolution of this ¢y-module, and it follows that in a family of functions f, the sum
Y dim; H**!(f), is constant. (This is really the same reason as given in the first paragraph:

the partial derivatives forming a regular sequence. Any isomorphism Oy — Q3*?! takes Jf
onto df A 4, and the complex (Qy, df A ) is isomorphic to the Koszul complex on the partial
derivatives.)

If the function is invariant under a finite group G, then one can also consider
HE P (f)=[H"** ()] = Q" !/df A Q}, where QF denotes invariant differential forms.
This also behaves well under deformations and so defines a multiplicity of the isolated
critical point, though it does not necessarily agree with the multiplicity defined by [0y /Jf]°.

This approach has the advantage that it does generalize to the infinite groups, and
the main purpose of this paper is to establish this for G = C*, the simplest infinite reductive
group. We expect that the results on multiplicity hold in greater generality — the basic feature
here is that for C* all the computations can be done explicitly. If the C*-action is the
complexification of an S'-action on R"*!, then Q3*'/df A Q% = [O4/Jf]", and conse-
quently the latter behaves well under a deformation of f, supporting Roberts’ conjecture.

The paper is organized as follows.

Section 1 consists of background material on quotients by C*-actions and their natural
stratifications by orbit type; most, if not all, of this section is well-known.

Sections 2 and 3 aim at understanding the C*-equivariant analogues of (0.1). In
Section 2 we consider the two classes of “‘equivariant” differential forms, the invariant forms
and the basic forms. The first are forms on X which are invariant under the group action,
while the latter are those invariant forms which annihilate vector fields tangent to the fibres
of the quotient map, and so are more properly forms on the quotient space Y. Accordingly,
there are two equivariant analogues of (0.1), which are intimately linked. These complexes
are both studied in Section 3, where it is seen that in contrast to the ordinary case, they are
not in general acyclic, although their low cohomology groups depend more on the C*-
action than on the critical point in question. Section 3 concludes with a brief discussion
of the implication of local duality for the cohomology groups of the analogue of (0.1) using
basic forms.

Most of Sections 2 and 3 are written with the simplifying assumption that the origin in
X is an isolated fixed point of the C*-action. The modifications for the general case are
described in Remarks 2.10 and 3.8.

The top cohomology group of (0.1) gives the multiplicity of an isolated critical point.
In the same way, the top cohomology group of the equivariant counterparts can be used to
define a multiplicity of an invariant critical point. Section 4 uses the results of Section 3 to
show that this multiplicity behaves well in a deformation, so can indeed be called a
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multiplicity. We also give some estimates on the multiplicity of generic critical points away
from the fixed point set of the C*-action. In Section 5 we compare the multiplicity defined
in Section 4 with the Jacobian algebra approach described above.

In Section 6 we use techniques due to Malgrange to show that the cohomology of the
Milnor fibres in the quotient space of an invariant function with an isolated critical point is
given by the cohomology of the analogue of (0.1) with basic forms. We also relate the
cohomology of this quotient Milnor fibre to the Chern class of the quotient map, which is an
extension of a theorem of Duistermaat and Heckman.

The paper concludes with an appendix containing an account of some simple basic
facts on local cohomology which are relied on heavily in Sections 2 and 5. Although most of
the material contained in the appendix is well-known to experts, it also serves to establish
some notation which facilitates the spectral sequence calculations performed in Section 2.

This research was done while James Montaldi was supported by a SERC grant held at
the University of Warwick.

1. C*-actions and their quotient spaces

We will be considering linear actions of C* on X = C"*!, Any such action can be
diagonalized, so that the action is determined solely by a list of # + 1 integers, the weights.We
can assume that the highest common factor of the weights is 1. It will be convenient to use
a notation which distinguishes between the positive weights, the negative weights and the
zero weights and their respective coordinates. Let a be the number of positive weights, b the
number of negative weights and ¢ the number of zero weights. Thus, n +1=a+ b+ c.
Let 4,,..., 4, be the positive weights and u,, ..., u, be the negative weights. We denote
the corresponding coordinates by x,,...,X,, V;,..., Vs and z,,...,2.. We assume that
a, b > 0 (otherwise the invariant functions would just be functions on the fixed point set
F = C°). We also assume that a = b, for the involution of C* given by ¢+ ¢t~! changes
the signs of all the weights, but leaves the invariant theory invariant! In this notation,
te C* acts by

A A
Eo(Xgyeees Xgs ViseesVps 215 eees Z0) = (A8 Xy, ooy 10X, tH Yy, o 1y, 24,000 2,)

The vector field which generates this C*-action is,
1.1) S—iix—a—+iuyi
. i1 iaxi j=1 jja)’j.

The quotient space. The C* orbits are all 1-dimensional except those in the fixed
point set F = C°. The orbits which are not closed lie in the “bad planes”

@, ={(x,0,z)} and &_={0,y,2)}.

Each orbit in the bad set (or null cone) # = #, U %_ contains a unique point of F iq its
closure. The quotient space Y as a set is defined to be the set of closed orbits. The quotient
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map 7 : X — Y associates to each point x € X the unique closed orbit in the closure of the
orbit through x. The restriction z |, : F — n(F)is clearly an isomorphism, so we denote n (F)
by F as well. Note then that n~!(F) = #. The topology on Y is the finest such that = is
continuous.

The algebraic structure on Y is given by the ring of invariant polynomials on X,
denoted by R. The invariant polynomials separate the closed orbits (but not the others, of
course). The ring R is finitely generated by, say, n,, ..., m; (which can be chosen to be
monomials) and the quotient map = can be identified with (n,, ..., m;): X —» C'. It is easy
to see that / = ab + ¢, since for each pair (i,j), with 1 < i< a, 1 £j < b, there must be a
generator of the form x{y; for some r, s. Furthermore, since dim(Y) =n=a+b+c—1
it follows that Y is never smooth unless b = 1. In Section 2, we show that if b+ 1 then Y
is not even isomorphic to a finite quotient of C”.

The following result is well-known.
Proposition 1.1. The quotient space is a normal, Cohen-Macaulay variety.

Proof. That it is Cohen-Macaulay follows from a general theorem of [15], see also
[16], which states that the quotient space for any reductive group action on a smooth space is
Cohen-Macaulay. It also follows from the local cohomology computations we do in Section
2. Itis easy to see that the quotient by a reductive group of any normal space is normal: just
take the invariant part of any monic polynomial in the definition of normality. 0O

It is not true in general that the quotient of a Cohen-Macaulay space by a reductive
group is again Cohen-Macaulay, unlike the case for finite groups. A simple example can be
found in Remark 5.7. However, Boutot [5] has established that the quotient by a reductive
group action of a variety with only rational singularities itself has only rational singularities.

We now give a brief account of the geometry of Y. Let X, = C**? c X, so that
X = X, % F. Let Y, be the quotient of X, by C*, so that Y = Y, x F. Now, there is another
action of C* on X,, which commutes with the given one, namely s e C* acts by

s (xp ) = (s*x;, sy

Note that all the weights are positive. We denote this copy of C* by C¥. The action of C¥
passes down to an action on Y, whose only fixed point is 0 € ¥;,. Consider (¥, \0)/ C¥. This
is isomorphic to (X' \#)/(C* x C¥). Now, C* x C¥ acts by

5s)- (x;,yj) = ((ts)lixi,(ts— 1)“’){}) .

The epimorphism ¢ : C*x C* — T?,(t,5) > (ts,ts~ ') = (u,v) (where T? is the complex
2-torus) induces an action of T2 on X \# by

C W) (xy) = (u*x,, vy).

The quotient (X \ @)/ T? is thus isomorphic to the product of two weighted projective spaces,
oneis P(4,, ..., 4,), the quotient of C*\{0) by the C*-action with weights (4,, ..., 4,), and
the other is P(u,, ..., 4,), the quotient of C*\{0} by the C*-action with weights (i,, ..., ;).
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It follows that Y=Y,XF and Y, is a ‘weighted cone’ on the product
PQys...s A) X P(uy, ..., wy). (For details on weighted projective spaces see [9] and [11].)

The real link S of the origin in Y, which is the intersection of Y with a real (27 —1)-
sphere surrounding 0, has real dimension 27 — 1. One can show that the rational hom-
ology is as follows: the betti numbers of S are 1 in all even degrees up to and including
2(b —1) and in all odd degrees from 2a — 1 up to 2n — 1 = dim S; the other betti numbers
are zero. We do not make any use of this fact so do not give a proof here.

Example 1.2. Consider the C*-action on X = C"*! with A, =+ =4,=1 and
py =+ =w, = —1. If ¢ = 0, then this action is free outside {0}, and so Y has an isolated
singular point. The quotient space is just the cone on CP*~1 x CP?~! and if we write the
invariants as a;; = x;;, then it is clear that the quotient space can be identified with the
variety of a x b matrices (a;;) of rank 1.

This action ‘covers’ the action with same values of a, b, ¢ but general values of 4, and
u; by the following diagram

crxx 2, x MLy,

| | |

C*XXL»X——L»Y

where ¢, is the action with weights +1 and Y] its quotient. The vertical arrows are the
quotient maps for the action of the product of cyclic groups

G=th cee leaxzmx oo lelb

on X, with each factor acting on the appropriate coordinate, and its induced action on the
quotient ¥;.

Let Uc Y, and consider the ring of invariant analytic functions on n~!(U). This
defines a presheaf of rings on Y, which can be sheafified to form the sheaf @, on Y of germs
of invariant analytic functions on X. It is a coherent sheaf, by the general results of [22].

Let x € X\ %, and denote by H, the isotropy subgroup at x (that is, the subgroup of
C* leaving x fixed). There exists a complex submanifold (germ) at x which is invariant under
H,_ and transverse to C*.x, the C* orbit through x; it is denoted S, and called the slice at x.
One defines the twisted product C* X z_S, to be the quotient of C* x S, by the H,-action
h-(t,5) = (th~ %, hs). C* acts on this space by ¢, - [,5] = [t,¢,5] (where [¢,5] denotes the
point corresponding to (2, 5) in the twisted product). The quotient of this action is isomorphic
to S,/H,. The action of H, on S, is called the slice representation.

Theorem 1.3 (The Slice Theorem: Luna, [17]). Let x lie on a closed orbit. With
notation as above, S, can be chosen so that the C* equivariant map

¢:C*xy S, - X,
[t,s] > LS
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is an isomorphism onto a C*-invariant neighbourhood U of x. It follows that ¢ passes down
to an isomorphism & : S,/H, — n(U), a neighbourhood of n(x) €Y.

Proof (Outline). It is easy to see that (i) ¢ is well-defined; (i) that d¢; ,, is an iso-
morphism, and thus is an isomorphism at each point of C* x;_S, if S, is sufficiently small,
and (iii) ¢ is a bijection, again if S, is chosen to be suitably small. The result follows. Luna
in fact proves this theorem in the algebraic category, where (iii) is considerably more
subtle. O

The stratification of the quotient space. The quotient space Y comes equipped with a
natural stratification: the stratification by orbit type. For each isotropy subgroup H of the
C*-action, the associated stratum of Y consists of all closed orbits in X with isotropy group
precisely H, and we denote this by Y. Let Xy = 77 (¥ )\ %, so that X,, consists of
points on closed orbits which have isotropy precisely H. Clearly, X4, is a submanifold of X
contained in Fix (X; H), the fixed point set of H. Moreover, the group C*/H (which is
either trivial or isomorphic to C*) acts freely on X, and so the restriction of © to Xy,
is a submersion onto Y, which is therefore a manifold itself. The stratification of Y by
orbit type is given by the collection of manifolds Y, as H varies through the isotropy
subgroups of C* including Y., = F.

A (closed) orbit £ €Y is said to be regular if its isotropy subgroup is trivial, and the
set of all regular closed orbits is denoted Y,,,. Because of the nature of the C*-action
(recall we are assuming that the h.c.f. of all the weights is one) the non-regular orbits in
X are contained in coordinate hyperplanes, so form a subspace of codimension at least 1 in
both X and Y. Suppose Y, has codimension 1 in Y and that £ € Y 5,. Then for x e n~1(£),
H acts on a neighbourhood of x by pseudoreflections (i.e. the generator of the cyclic group
H has only one eigenvalue different from 1). The quotient is therefore smooth at any point
in Y, and we see that Y is non-singular in codimension 1, in accordance with Proposition
1.1. The open subspace of Y consisting of regular points and these pseudoreflexion
hyperplanes will be denoted U. Obviously, U =Y,,, if and only if the action is without

pseudorefiexions.

This seems to be a convenient point to state the relationship between critical points of
functions on Y and of their lift to X. (We use the same notation for a function on Y and its lift
to X.) Recall first that a function on a stratified set has a stratified critical point at & if its
restriction to the stratum through ¢ has a critical point at £. Recall also the so-called prin-
ciple of symmetric criticality, which states that a function on a smooth manifold X invariant
under the action of a reductive group G has a critical point at x if and only if its restriction to
Fix (H,) has a critical point at x. A geometric proof of this principle is roughly that the H-
invariant complement to T, (Fix H,) in T, X has no trivial component and so df, restricted to
this complement must be 0. There is a more algebraic statement and proof as follows:

Lemma 1.4. Let H be a subgroup of C*, and let V = Fix(H; X). Let f and f' be
invariant functions on X whose restrictions to V agree. Then f— f'e I(V)*. Consequently,
Jf+ I(V) = Jf' + I(V), where Jf is the Jacobian ideal of f.

Proof. We may assume that V = {xy="+=x,=y, =+ =y,=0} for some
r<a,s S b, and let W be the complementary coordinate subspace, so X = V@ W. It is
enough to prove the assertion for f’ = f,,, where f;, is defined by £, (v, w) = f (v, 0).
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Now, f— fy is a sum of monomials, and it is enough to show that each monomial is
in I(V)2. So, x*y? is invariant if and only if (¢, 4) + (B, ) = 0. If H = Z/Z,, then reducing

this equation modulo v gives Y, a; 4, + Y. B;u; = 0 (modv). Since the 4,, u; occurring in
i=1 ji=1

this sum are non-zero modulo v it is not possible for all but one of the a; and f; to vanish,

with the remaining one being equal to 1. 0O

Lemma 1.5. Let f be an analytic function (germ) at (€Y. Then f has a stratified
critical point at & if and only if f has a critical point at some (and hence any) point x in the
closed orbit in n~ ! (£).

Proof. Suppose ¢ €Yy, and choose any x to lie on the closed orbit in 7! (&), so
xeXy<X H Now, « : Xy = Y, is a submersion, and f is constant along the fibres, so it
follows that f has a critical point at £ if and only if its restriction to Xy, has a critical point at
x. By the principle of symmetric criticality, this is in turn equivalent to f having a critical
point at x. O

Examples. We end this section with a brief discussion of three special classes of
actions, firstly where b = 1, secondly actions for which the sum of the weights is zero, so the
representation is in SL, , , (C), and thirdly “real actions”. We will be returning to each of
these in later sections.

Actions with one negative weight. Suppose the C*-action has only one negative
weight u, so b=1. Thus, X = C*x C x F. Now the cyclic group Z/uZ < C* acts on
X, = C°x F and trivially on C®= C. Let R, denote the ring of polynomials on X, in-
variant under this group, then there is a ring homomorphism R = R,, p(x,y,2) — p(x, 1, 2).
This is clearly injective, as a C* invariant function which vanishes on {y =1} must be
identically 0, and is surjective as each term in any Z/u Z invariant function must have weight
in p.Z (with respect to the C*-action). The terms can then be multiplied by appropriate
powers of y to make the weight 0.

Thus if b = 1 and the only negative weight is u, then Y is isomorphic to the product
of C°/(Z/uZ) and F, and so is a cyclic quotient singularity. In particular, if 4 = —1, then
Y is smooth. (Y is also smooth if the action of Z/uZ on C* is by pseudoreflexions, which
happens when all but one of the A, are multiples of p.)

Itis not hard to show that the stratifications by orbit typeof Y and of Y, = X, /(Z/uZ)
coincide outside F. If, furthermore, Fix (Z/uZ; X,) = F, then the stratifications coincide
completely. Indeed, if we identify X, with C?x {y = 1} X F c X, then X is invariant under
Z|pZ and a map Y — Y, can be defined by [x,y,z] — [x,y,zZ]nX,, (square brackets
means the C* orbit through a point — note that [x,y,z]n X, is a Z/uZ-orbit in X,). Let
Y, be a stratum of Y. Then either H = C*or H=Z|vZ for some Z/vZ = Z/uZ (other-
wise Fix (H; X) < #). Clearly, then Fix (Z/vZ; X,) = Fix(Z/vZ; X) n X,. So the image of
Y g is Y, @, The stratifications of Y\ Fand Y;\F therefore coincide. If Fix(Z/pZ; X,) = F
then F is a stratum of Y, as well as of Y. The fact that the stratifications coincide on the
complement of F was already noticed by Wall [30] for C*-actions on c3.

5 Journal fur Mathematik. Band 437
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Actions with the sum of the weights equal to zero. These actions have some particularly
nice properties. We will see in Section 2 that the quotient space is Gorenstein. For now
though, we will limit ourselves to noting that the C*-action contains no pseudoreflexions,
because a pseudoreflexion cannot have determinant 1.

If the sum of the weights is 0, and there is only one negative weight u we have that Y
and the cyclic quotient Y, are isomorphic as stratified varieties, since in this case
Fix(Z/uZ;X,) = F.

Real actions. A complex representation of a (reductive) group is said to be real if
it is the complexification of a real representation of a (real reductive) group. This is parti-
cularly simple in the case of finite groups, as the complexification of a finite group is the
group itself. On the other hand, C* can be viewed as the complexification of the circle
group S! = SO(2; R).

Let the circle group S* act on R"*!, with rotation speeds 4,, ..., 4,,0,...,0 with
each 4,>0 and (n— 2a) 0’s (note that 4 and — 4 give isomorphic actions). The com-
plexification of this action is the action of C* on C"*! with weights

(AgseeesAgy —Ags ey —44,0,7...,0).

Thus a C*-action is real if and only if the weights occur in equal and opposite pairs.

It follows from this characterization that real actions have the property that the sum
of the weights is zero, so there are no pseudoreflexions.

In [25], there are the following characterizations of real actions which we will need in
Section 4.

Proposition 1.6 (Schwarz, [25]). The following are equivalent:

1. The C*-action is real.

2. Every slice representation is real.

3. There is an invariant non-degenerate quadratic form.

The proof in the C* case is easy (Schwarz’s theorem is for general reductive group
actions). In particular, if the weights are as above, then x,y, + - + x,y, + 2z} + -+ + 22
is an invariant non-degenerate quadratic form.

2. Invariant and basic differential forms

In order to do analysis on singular spaces it is useful to have a notion of differential

forms. Now, for any singular space, there are the Kihler differentials, but these do not

usually have very nice properties. In our case, Y is a quotient space for a C*-action so it
is natural to use differential forms related to the-group action. There are two such classes of
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differential forms: the invariant forms and the basic forms. In this section, we define these
two classes of forms and then discuss some fundamental properties.

On X = C"*! we have the ordinary holomorphic differential forms, Qf. There are
two operators on £,: exterior differentiation,

d:QF - Qp+!
and contraction with 3, the vector field given by (1.1) generating the C*-action,
13:QF - Q271
These can be combined to give the Lie derivative,
& =1d+diy 1 Qf - QF,

which acts on a monomial form @ = z*dz? as multiplication by its weight w(w) = (« + B, 1),
where A is the n-tuple of weights of the C*-action. For each integer k, there is a subset of 2§
consisting of forms of weight k, which we denote by [2£],. Each of these weight spaces is a
module over the ring R of invariants, and more generally the wedge product respects the
weights:

(280 A (241 < [QFDiss -
We put:
Qp = [0f], = {0 e Q| % (@) = 0}.

This R-module is called the module of invariant differential p-forms, because they satisfy
t*w = o for all te C* The elements of 2f are not to be regarded as differential forms
on Y, since they are not necessarily killed by vector fields along the fibres of the quotient map
7, and moreover, 23 *! is non-zero and torsion free, even though dim Y = n. The module of
basic p-forms is defined to be,

Qp = ker[1,: @ —» 2§7'1.

Note that 1,: Q3! — Q2 is injective, so that Q}*! = 0. Note also that 22, like 2£, is a
torsion free but not necessarily free R-module.

The above constructions can be sheafified, and from now on we consider 2§ and Qf
to be sheaves of @, modules. By the theorem of Roberts [22] the sheaves 2F are coherent,
and it then follows that so are the QJ.

Away from F, the basic forms can be identified with forms invariant under a finite
group action:

Proposition 2.1. Let (€Y \F, and x e n~ ' (§). Let S, be a slice to the group action at
x, and H, be the isotropy subgroup of x. Then H, acts on the module Qf_of p-forms on S,
and the stalk Qf . is isomorphic to the Oy »-module of H,-invariant forms (Q§ )Z~.
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Proof. We use the notation of the slice theorem (Theorem 1.3). Leti: S, — U be the
inclusion, and let w € Q§(U). Then i* w € (22_)¥~. Moreover the restriction of i* to the basic
forms Q7 (U) is injective. Its surjectivity is seen by using the slice theorem: one has the
composite C*x S, —» C*xy S, — U (where the first map is the quotient by the action of
the finite group H,, and the second map is ¢). Let a € (2% )"~. This p-form can be extended
trivially to C* x S, and the trivial extension is then C* X H,-invariant and liesin kerz,. O

Corollary 2.2. For any e Y \F, the stalks Qf . are Cohen-Macaulay Oy ,-modules.

Proof. Q%(S,),is a free, and hence Cohen-Macaulay, 0g_ ,-module, and is therefore
a Cohen-Macaulay ¢y ,-module (since H, is finite). Furthermore, ©/ , is a direct summand
of Q7(S,),, so it too is Cohen-Macaulay. O

Recall that the set of smooth points U = Y consists of the regular orbits and the
pseudoreflexion hyperplanes.

Corollary 2.3. The restriction of Qf to U is precisely the Oy-module of holomorphic
p-forms on U.

There is therefore no ambiguity in writing QF.

Proof. Firstly, let Y, = Y be the set of regular orbits (those with trivial isotropy). If
¢ e Y, then the result holds since = is a submersion over Y,,,. If { € Y5, with H acting by
pseudoreflexions, then this follows from the proposition by a simple local computation. O

It should perhaps be emphasised that basic forms do not coincide with Kahler forms.
If we denote the Kihler forms by 2 then there is a map Q7 — Qf, which in general is neither
injective nor surjective. We will show at the end of this section that Qf = j, QF, where
j:U o Y denotes the inclusion; in general the Kéhler differentials do not have this nice
property. It follows, in fact that Qf is the sheaf of Zariski forms — the bidual of Q7.

Example 2.4. Consider the real C*-action on X = C"*! = C?* with weights +1.
The ring of invariants @ is generated by the a®> monomials x; y;. The modules of invariant
differential forms are 0y-modules with the following generators:

wtlio=dx A ...Andx,Ady, A ... AdY,,

()

", @ @
Qx'xidxj’y'dyj’

_y. O g @ ®
X dxady’ ”dx,‘/\dx,’y‘-y"dyk/\dy,’ .

QF :dx; A dy;, x;x;dy, A dy,, y,y;dx A dxy,
Qy : x,dy;, y,dx;. .
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. (1]
Here the notation 7, means dxi A Adx_yAndx Ao AdXgAdy A L. Ady,,
i

and similarly for other forms. The basic forms are then generated by:

a a
Qtix Y (xk—w_"h_‘w—“), Yi 2 (xk 2 —Jk ® ),
=y dx, A dx; dy, A dx; K1 dx, A dy; dy, A dy;

Q: x;dy; + ydx;, x,. %, dy, — yidyy), vy (xdx; — xdx,) .
Note that the Kihler one-forms @' on the quotient space are generated by
d(x;y) = x;dy; + y;dx;
and so do not coincide with Q}.

The following lemma is well-known, though we give a proof as there does not seem to
be a good reference. The referee has pointed out to us that I. Naruki gives a proofin [19],
Lemma 2.1.1, but only in the case that all the weights have the same sign (so that the Lie
derivative % acts as an isomorphism on each Q).

Lemma 2.5. The homology of the complex (£, 1),

n+1 _' oogn 8 . _ B o1 b
O—»Qx ,Qx > 'Qx_—’@y_’o

is given by
Hy (@5 15) = Q.

Here Qg is just differential forms on F, Q2 = Oy and if F = 0, then Oy = C. The isomorphism is
induced from restriction to F of differential forms: 2} — Q}.

Proof. Suppose first that F = 0, and consider the sheaf complex (£, z,), of all diffe-
rential forms on X. In a neighbourhood of any z € X \0, coordinates can be chosen so that

= 5‘;— It is then clear that the complex is exact in a neighbourhood of z, and thus is
1

exact on the complement of {0}. Now, the 2 are all free 0)x-modules, so by the acyclicity

lemma (see, for example, the appendix) it follows that H, (£, 1,) = 0 for i > 0. Using the

form of 3 given in (1.1), it is immediate that 1,(£2}) = » (the sheaf of functions vanishing at

0), so Hy(£2y,15) = C.

The lemma now follows in the case that F = 0 by taking invariant parts, an operation
that commutes with 5.
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The general case follows since the ring of invariant differential forms ©j is isomorphic
to the tensor product of the pull-backs, pf Qf ®,, p3 QF, where p,: X » X and p,: X > F
are the cartesian projections, and i, is zero on the p}Q} factor. D

Note that this lemma implies in particular that 1,: QF*' — Q} is an isomorphism.

Local cohomology calculations. As usual, we suppose C* acts linearly on C"*!, with
a positive weights {A,,...,4,} and b negative weights {u,,...,u,}, and we choose
coordinates x;, y; and z, accordingly (as in Section 1). The ring of invariant polynomials is
denoted R. The ring C[x, y, z] is an R-module on which C* acts in an obvious way. The
submodules C[x, y, z], consist of polynomials of weight k with respect to this C*-action,
and C[x, y,z] decomposes as a direct sum of these weight spaces.

For simplicity, in this subsection we consider only the case F = 0. Thus,n=a+ b — 1.
The modifications necessary for the general case are described in Remark 2.10. For a
discussion of local cohomology, see the Appendix.

Proposition 2.6. For i <n, the local cohomology groups at 0€Y of C[x, y] (as an
R-module) are given by:

0, ifiab;
. ) CD14AK), ifi=a+b;
H (C[x,y]) = CIAG). fizb+a
Clx]JA e ClylA(x), ifi=a=5b.
Here
- g1
Ax)=C[x{%...,x; 1] Y

and A(y) is defined similarly. The isomorphism is an isomorphism of RC*-modules (in parti-
cular, it respects the weighting [-1,).

Proof. For this proof, we denote C[x, y] by S, and as usual n: X - Y is the quo-
tient map. Since = is affine, m, is exact and we have an isomorphism,

Hiy(n,S) = 1, Hy(S),

where # =n"'(0)=#,0#_,and #, = {y =0}, #_= {x = 0}. The result is then ob-
tained by computing the local cohomology along the subspaces #, and #, N #_ = {0}
(which is well-known, see Example A.5), and then using the Mayer-Vietoris sequence (see
for example [12]) to deduce the local cohomology along £. O

Recall that a module is maximal Cohen-Macaulay if it is Cohen-Macaulay and has
full support.

Corollary27 Let A= z Ay, and p = Z u; and suppose —A <k < —u. Then
i=1
C[x, ylx is a maximal Cohen-Macaulay R-module Furthermore, as RC*-modules,
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1

) C-
Hig, (C[x,y]-,) = Xg... X,
0 otherwise ,

’ l:fi=a’

and
1

. C-
Hi (Clx,y]_,) = ViV
0

, ifi=b,
otherwise .
A particular case of this corollary is that R = C[x, y], is itself Cohen-Macaulay.

We turn to the invariant differential forms QF. Now,

R=[= @D I[Clxyldx*rdy’],.

lal+|Bl=p

Here « and ff are multi-indices of lengths g and b respectiveiy. Since the weight of dx* A dy*?
is Yo, A+ Y Bju; = (o, A) + (B, p) it follows that, as R-modules,

[C[x,yldx* A dy?]y, = C[x,y] (@)= (Bom) *
Now, since all the entries in « and f are 0’s and 1’s, — 4 < —(4, ) — (B, u) £ —u, with the
equalities occurring for « =(4,...,1), $ =(0,...,0) and vice-versa. Thus we have the

following central result.

Theorem 2.8. Suppose F = 0. The local cohomology groups H{y,(QF) of the invariant
differential forms for i <n are as follows.

H(io}(gf(,) =0 for p+ab.
In other words, for p # a, b, QF is maximal Cohen-Macaulay.

The local cohomology groups of Q¢ and Q2 are all zero (for i < n) except for

dx, A ... Adx dy,n... Ady,
HY Q= C——"—=2 HbH(@)=C——""—=,
o (&%) Xy.o X, 0 (i ViV
for a = b, while if a=b,
dx, A ... ndx, dy, A ... ndy,
HY Q) xC— ‘@ C :
(o (25) Xy... X, Vi Db

Proof. This follows quite simply from the Corollary, and the discussion above. O

We now derive from the local cohomology of 2F the local cohomology groups for
the basic forms 7.



68 Montaldi and van Straten, Quotient spaces and critical points

Theorem 2.9. Suppose F =0. For i<n, the local cohomology groups at 0 of the
modules of basic differential forms are given by,

C, ifi=p+1and 1<p<b,
H(iO)(Qf)L“ C, ifi=pandp=a,

0 otherwise .

This result is summarized pictorially in Figure 1.

4 ] %
nx %k k %k %k x % % %k x X X X X

> P

0 b—-1, a n
Figure 1. The local cohomology groups H,y (€20).

(Dots represent 1-dimensional groups, while stars represent infinite-dimensional groups.)

Proof. 'We will use the truncations of the (€4, 1;) complex,

! -
Tep 0 0F > QF 0 s 5 0 > 0 > 0.

By Lemma 2.5 this is acyclic, with H,, (1 ,) = C. The proof proceeds by a spectral sequence

argument on the Cech double complex C{O} (r<,) over T, (see Example A.5), together with
Theorem 2.8. The result does not follow immediately, however, and it is necessary to analyse
the higher differentials.

We use the Cech complexes associated to the covering of C"**\ 4% by the open sets
W,; = U,nV, where
ij i J
U = {x;+ 0}, i=1,...,a,
V{={yj=‘=0}, j=1,...,b.

Thus W,; = {¢,; *+ 0}, where ¢,; = x;* y. To facilitate the computation we use the deno-
minator symbols ¢;;,i=1,...,a and j=1,..., b, as introduced in the Appendix.
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First consider the total untruncated double complex CQ, = &) C1(Qp). Elements of

p.q
C(Qp) are linear combination of terms of the form ¢, w,, where I is a g-tuple of pairs
(i,j), and ; is an invariant p-form with denominators which are nowhere zero on

w,= ) W,;- The double complex CQy is made into a graded-commutative algebra by
@i,j)el
giving all the generators c;;, dx; and dy; degree 1, and letting them all anticommute. To

remind us of this, we use the ‘ A’ notation for the c;; as well.
On CQ, there are two differentials:

1:CU@QP - CUQEY,
c:CU@p —» CrH@Y).

Note that 1;(x A B) = 130 A B+ (—1)!*la A 13 B, and 50 15 and ¢ anticommute. D = (1, + ¢) is
the total differential.

Define a map ev: C‘Qx — C to be the composite
CQ » 0, » C

where the first map is the cartesian projection from the direct sum to one of its summands
0y = C°(0,), and the second map is just evaluation at 0 € X. By the spectral sequence of
Proposition A.2 we know that ev induces an isomorphism on homology,

ev,: H(CQy, D) —» C.

Consider the following elements of C!(Q}):

e = Z > T

a b dy
§-= c—L.
i:[:‘l j§1 / H;y;
As a Cech form, &, is just dx;/4;x; on W, for each j, and {_ is analogous. It is imme-

diate that 1,(¢,) = —c, where ¢ =) ¢;;, and so
ij

1 1 _
’“(ﬁ“) - ““((p—i)! “ )

ny =exp(ls),

Thus, with

one has
Dn, = (s +0)n. =0.
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Consequently, we have two cycles 7, and #_ in H(C®,, D) and both are non-trivial as
ev(n,) =ev(n_) = 1. Moreover, it follows that the difference n, — n_ is a boundary, say

1, —n_ = D{ for some { = Y {,, with {; e C*(Q%*1). (In fact
k=1

& = 2 Z cij(dx;/ ;%)) A (dy;/1;y) )

With this much in hand, we now pass to the truncated double complexes Ct - Again
one has

ev*:H(Ctép,D) =, c.

The computations depend to some extent on p, and we distinguish three cases.

Case 1: 0< p<b. In this range it follows at once from the ‘first vertical’ spectral
sequence that, for g <n

ifg=p+1,
otherwise .

C,
H () = { 0
A representative of Hj' ! (22f) can be taken to be

1 1

Case 2: b <p<a. In this range, the ‘first vertical’ spectral sequence allows the
following two possibilities:

(A) H,(@QP) =0 forall g<n,

C, ifg=p,p+1,
q Py —
(B) H () {0 otherwise . '

Now (B) would occur if there were a non-zero higher differential H%, () — H{, (2g). But,
because £2*! =0, the element n_ = exp(¢_) is a cycle in Crg,. The non-zero higher
differential would imply that #n_ is a boundary in C‘t§p, which contradicts ev(n_) =1.
Consequently (A) must hold.

Case3: a<p<n+1. Again there are a priori two possibilities:

C, ifg=p,
4 (OP) —
©  Hy (@) {0 otherwise ,

c*, ifqg=p,
D) HLH@p)=<C, ifg=p+1,
0 otherwise .
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We claim (D) cannot occur. Since £2*! = £P*1 = () in this range, both n, and n_ are cycles
in Cré p- Possibility (D) could occur if both #, and 5_ were killed by higher differentials,
but this is impossible since ev(,) = 1.

Furthermore,
) 4
D (Z Gk +13Cp+1) =Ns—N_,
k

80 13{,+, can be taken as a generator of Hp,(Qf) for p in this range. O

Remark 2.10. All computations of local cohomology for the general case F # 0 (for
i <n) can be derived from the corresponding results for the case F = 0 by using Lemma
A.4 in the Appendix. Write X = X, X F and Y = Y, x F. The results corresponding to
Theorem 2.8 are:

2.1) Hyp(QF) = Hi (2%,) @ QF°,

22 Hp(Qf) = Hp,(2y,) ® Qp~°

(where {0} = X,) and for i # a, b, i < n, one has H}:(Q2F) = 0. The local cohomology along
{0} = X is given by

(23) Higi (%) = Hio)(2x,) ® (™),
24 HE “(Q)) = Hp, (2%,) @ Hyy (")

(where on the left hand side {0} = X, while on the right hand side {0} < X,), and again,
for i a+c,b+cand i<n all Hj(QF) =0.

For the basic forms one obtains similar statements with y replaced by £, and Qy,
by Q,,. More precisely, the analogues of Theorem 2.9 are

(2.5) Hy (@) = @ Hpy (R, ® 2,
r=0

(2.6) Hip, (@) = @ Higy"(2F,") ® Hip, (QF) -
r=0

Recall that U c Y \ F is the set of smooth points in Y, and that Y\ U has codimension
at least 2 in Y. The following result does not assume F = 0.

Theorem 2.11. 1. Let j: U — Y denote the inclusion, and let QF denote the usual p-
forms on the smooth space U. Then,

Qr=j,08.

2. Q% is the dualizing sheaf of Cy.
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3. If the sum of the weights of the action is zero then Y is Gorenstein.
4. If b> 1 then Y is not isomorphic to a quotient of C" by a finite group.

Proof. 1. Consider the inclusions a: U ¢, Y\F, and B:Y\F ¢ Y, so that j= Boa.
Now, by Corollary 2.2, 2, ; is Cohen-Macaulay, so Qf,; = «, Q. Secondly, by Theorem
2.9 (and Remark 2.10 if F + 0), B, 2}, = QF.

2. On a smooth space, the sheaf of top differential forms is a dualizing module, so
this holds for U. Thus 2. follows from the fact that dualizing sheaves and Q3 are both
Cohen-Macaulay.

3. This follows from 2. because if the sum of the weights is zero then there is an iso-
morphism 0, —— Q%" ! givenby f+> fdx, A ... A dz,. Furthermore, as already pointed

out, 1,: 23! - Q7 is an isomorphism.

4. If Y is a finite quotient of a smooth space then Q} is Cohen-Macaulay. If b > 1 this
contradicts Theorem 2.9. 0O

For any Oy-module M one sets M* = Hom,_ (M, Qy), since Qy is the dualizing sheaf
of @, and it follows that depthy,; M" = 2. Since Qf A Q7 "F < Qy, it follows that there is a
natural map Q"7 — (2f)". Now, on U this map is an isomorphism, and since both Q)7
and (QF)" have depth at least two we obtain the following:

Corollary 2.12. For each p,
@) =",

For similar reasons,

(@) = Q*'7r.

3. Quasi-acyclicity of the df A -complexes

Let f be an analytic function defined in a neighbourhood of 0 € X = C"*! and in-
variant under the action of C*. Recall that the action has a positive weights, b negative
weights and ¢ zero weights, and without loss of generality we assume a = b. Then df is a
1-form which is not only invariant but also basic. Thus, for each p,

dfAQEc Q' and dfaQPc QP

We can therefore define two complexes of sheaves on Y with differentials df A : the invariant
df A -complex,

dfa

@pndfr):0 » 0, 22 gt *

dfa . dfa
> Q2 > 2. » Q21 5 0,

and the basic df A -complex,
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@, dfA): 0 > 0 -2 g DNz YN, N on .

We are interested in the cohomology of these complexes. In the classical case where
there is no group acting on X and f has an isolated critical point, all cohomology groups are
zero, except for H**! = Q2*1/df A Q}, and the complex is said to be acyclic. Moreover,
the multiplicity of the isolated critical point is given by the dimension of H"*!. In our case,
the lower cohomology groups are not all zero, though they depend only on the C*-action
and not on the function f, provided it has an isolated critical point on Y, and the action of
C* has an isolated fixed point, and we say rather loosely that the complexes are quasi-
acyclic.

We consider each of the complexes in turn, and use the equivariant df A complex to
relate them. To simplify the exposition, we assume that the fixed point set F = 0. For the
modifications necessary in the general case, see Remark 3.8.

The invariant df A -complex.

Lemma 3.1. The cohomology of the invariant df A - complex is supported on the critical

locus of f.

Proof. Let & €Y be aregular point of £, and let x € n~!(¢). Then f is non-singular at
x by Lemma 1.5, and there is a neighbourhood of x on which the complex of ordinary
(non-invariant) differential forms (Qy, df A ) is exact. The result follows by taking invariant
parts (which commutes with dfA). O

Since the QfF are coherent sheaves, so are the cohomology sheaves of the above com-
plex. It follows from the Lemma and the Nullstellensatz for coherent sheaves that if f has
an isolated critical point on Y then the cohomology groups are finite dimensional.

We now show that the complex (2, df A) is quasi-acyclic.
Proposition 3.2. If f has an isolated critical point at 0€Y then, for i <n,

o 0, ifi+2b,
H(Qx’df’\)—{c for i=2b, if a>b+1.

Proof. Since we know the local cohomology groups of the £y, we can use the spectral
sequence of Proposition A.2. By Theorem 2.8, we know that for ¢ <# and a > b,

EP9~ C, if (p, ‘I? =(a,a) or (b,b),
1" 10 otherwise.

If a =b we get for g <n,

EPi~ c?, if (p,q)=(a,9),
1710 otherwise .

The spectral sequence therefore degenerates at E,, and the result follows. O
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Example 3.3. Consider the C*-action with weights +1 only. Recall that the local

d ...nd
—J—}L—f——!—'—’. Suppose that f
Y1+

is a generic linear form on the quotient space, then after an equivariant change of coordi-
nates, f=x,y,+ *** +x,¥,. The element of H?(Qy,dfA) corresponding to n in the
above proof is then dx,; A --- Adx, Ady; A -*+ A dy,. This is not hard to show using the
spectral sequence, however it is simpler to observe that this form is indeed killed by df A
though it is clearly not contained in df A Q2> 1.

cohomology group H®(R}) is generated over C by 5 =

The complex (€y, df A) has two further cohomology groups, namely H"(Qy, df A)
and H"*1(Qy,df A). We will see below that these two groups are in fact very closely
related.

The basic df A -complex.

Lemma 3.4. The cohomology of the basic df A -complex is supported on the critical
locus of f.

Proof. Define the complex ('Qy, df A) to coincide with (€y, df A ) except for replac-
ing Oy by s, in degree 0. There is then an exact sequence of complexes

0 > (@, dfr) > @ dfA) —— (7 Ldfr) - 0,

with the associated long exact sequence in cohomology,

(3.1) o = H » H —2> 'Hi™' - H{*' - -

(with the obvious notation). For p > 1, 'H} = Hf while for p =1 there is a short exact
sequence 0 - C — 'Hy — H} — 0. The result follows by induction on i, as H' = 0 off the
critical locus. 0O

Proposition 3.5. Let f be an invariant function, with an isolated critical point at 0 € Y,
then for i<n,
C, if3<iZ2b—1andiis odd,

H'@y, dfn) = {0 otherwise .

Proof. As in the proof of Proposition 3.2 we use the spectral sequence of Propo-
sition A.2. The detzils are left to the reader. O

The complex (£2;, df A) has one more cohomology group H"(€y, df A), which is in
fact closely related to H" ** (Qy, df A). Indeed, 1, provides a map H"*! —» Hy, as in (3.1),
which is an isomorphism if » > 1, and is surjective with a 1-dimensional kernel if n =1
(ie.ifa=b=1). . ‘

The equivariant df A-complex. For any group action there are the so-called
equivariant cohomology groups, see for example the paper of Atiyah and Bott, [1]. In the
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case of a circle action, the de Rham model for the equivariant cohomology can be described
by a complex (2y[u], D), where the differential is D = d + u.14, and d is the exterior
derivative, u is a formal variable which commutes with everything, and 14 is the con-
traction with the vector field generating the circle action.

We have found it useful to consider the analogous complex (Qy[u], D), with
D = df A + u.i,, and again u is a formal variable commuting with everything. We can
represent this complex as a double complex with terms A”? = Q944 and with horizontal
differential df A and vertical differential 14 as follows:

1 1

Opu —» -+ —» Q72 > Q7w - Q2 -
T 1 T 1
Opw — Qu - > R 'u > Qu - QR
Tusy ) 1 1
1 2 n n+1
O » & — QX - QX -

The complex is a C [u]-module, and since the differential commutes with u, the cohomology
of the complex is also a C [«]-module.

The homology of this complex can be computed by two spectral sequences. Com-
parison of the two limits gives a way of constructing explicit generators of H2*(Qy,df A)
and H'(Qy,dfA) for i <n, as well as enabling us to compare the remaining groups
H"(Qy,dfN), H" 1 (Qy,df A) and H"(Qy,df A). We will denote these three groups by
H", H"*! and H} respectively. As usual, we assume F = 0 to simplify the exposition, see
Remark 3.8 for the general case.

Computing the horizontal homology of this complex gives H'(Qy, df A) on each row,
most terms of which are 0 if the critical point f is isolated in Y. On the other hand, the
vertical homology gives 2, along the bottom row, copies of C along the diagonal E}'?,
p >0, and zeros elsewhere.

Consider as usual a function f€ », = @), with an isolated critical point at 0 € Y. By
the acyclicity of the (€, 1,) complex, there is an element o € Qy satisfying

(3.2 | @ = 1.
Consequently, df = dig(a) = —14(de). Define the closed form w = dae 2}, so
3(w) = —df.

(This is the same relationship as between a symplectic form and the hamiltonian function
associated to a symplectic vector field — see Section 6.) Note that w is only an invariant
form, while w A df is a basic form, for 13(w A df) = —df Andf = 0.
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Now consider, for k£ =1, 2, ..., the elements

k o
3.3) o=y u""(—ﬁ) € Qy[u] .

1=0
We have

COk

. l .

G4 DE™) = (dfA +uzs)( Z “<%>> = (F) a7

1=0 : ;

It will be useful to consider a particular choice of a satisfying (3.2), which is defined

as follows. Let
a af
d, f= —dx.
+f ,'Z:l axi dxt >

and 9, = Y A,x,;0/0x;, then 13(d, f) = 9, (f). We can decompose f into its ‘3, -homo-
i=1
geneous’ parts:

f=X f

e>0

where f, satisfies 3, (f,) = ¢.f,. Define

(3.5) a=Y o Yd,f,.

¢>0

and one has 13(a) = f, as required. The form ® = dua is then
1 62
(3.6) o =) H;dyAdx;= e ! —=2-dy,ndx;.
Z j4)j ogo § axiayj Yj

We call this w the “weighted mixed Hessian” of f.

Proposition 3.6. Let o satisfy (3.2) and let ¢*® be as in (3.3) with w = do. Then the

3

elements B, = D(c®¥) = df A (% , are d-closed representatives of non-zero elements of
H**1(Qy,df A), for k=1,2,...,b —1.

Moreover, with w defined by (3.6), and the resulting o in (3.3), one has

»®

1. 7 Tepresents a non-zero cohomology class in H*®(Qy,df A).

2. The elements
U(Zb)’ u.a.(2b) — G(2b+2), u20.(2b) yeen

are cycles in HY which are not boundaries, i.e.

Clul.c® o HY,
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as C[u]-modules.
3. This choice of w gives a splitting of C [u]-modules
H%=C[u].c®®T.

Here T is the C [u]-torsion part which is concentrated in degree n, thus

H’l

eq=

T, if nis odd,
T® C.c™, if n is even.

4. The groups T, H"*' and H" are related as follows:

b

a=b: OAC.[%]_,H"H__E_*I_{"aO; T~H",

b
a=b+1: 0—»]_1"+1——lf—»LI"—>C.|:—(;)—':|—+O; TxH"*,

~

a>b+1: H"t' —5 H"~T.

Proof. By the first horizontal spectral sequence for the equivariant double complex
we see that HY, = 0 for k < 2. It follows then from the first vertical spectral sequence that
the elements ¢ form a ‘ladder’ for the higher differentials, so the classes of D(a?»)
generate HZ**!. Furthermore, because w = da the forms f, are d-closed.

Let w now be given by (3.6).
(1) First we show that df A @ = 0. Now, 13(w) = —df implies

of _ of _
5‘:‘ = ;MJ’;H;’;, 3, = ;}vixiHij-

The coefficient of dx; A dy, A ... A dy, in df A @® is therefore a (b + 1) X (b + 1)-minor of
the a x (b + 1) matrix
o Y
0x, 0x,
H;

These minors are zero however, since the vector (0f/dx;) is a linear combination of the rows
of the matrix (H;;).

By (3.4), 6?? is a cycle in the equivariant df A -complex. Moreover, the coefficient of
ubin ¢?®is 1, so from the first vertical spectral sequence one sees that ¢®? is not a boundary.
The contribution of ¢®? to the first horizontal spectral sequence is w®/b! which is therefore

non-trivial in H2®.

6 Journal fiir Mathematik. Band 437
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(2) For k 2 b, the element ¢?¥ is a non-trivial cycle in the equivariant double com-
plex by the same argument as given for ¢®? in part (1).

(3) This follows from the first vertical spectral sequence.

(4) Consider the case a > b+ 1 (the other cases are similar). In the first horizontal
spectral sequence, one has

Eg+2b,p ~ H2b.up—1

’

H", ifk=0,
Q.u* if k>0,

Ejtkrtitk >~ Ky* for k20,

E1+k nt+k ~ {

where K and Q are defined by

1,

0> K- H'"'" =S H"-> Q0 - 0.

Since the H2%y? are all non-trivial in H*, the higher differentials vanish which implies

that K=Q=0. O -

So, in particular, all the groups H"**, H", Hy, H_, and T are essentially equal, differ-
ing in dimension by at most 1. (Recall that Ig mduces an isomorphism H"*! — H} unless
a=b =1, in which case there is a 1-dimensional kernel.) The group T is always the
smallest.

Example 3.7. Consider a real action of C* on X with weights {+4,,..., +4,} and
consider the invariant function f'= ) x,y;. This function has an isolated critical point at
OcX and dfAQp = myQp*!. Taking invariant parts gives df A Qf = », Q"' and
consequently,

C, ifi=3,5,...,n
i . —_ 2 ki b bl
H @y, dfr) = {0 otherwise .

Remark 3.8. So far in this section we have assumed that F = {0}, thatis, ¢ = 0. The

modifications necessary for the general case are reasonably straightforward.

Firstly, Lemmas 3.1 and 3.4 are unchanged, with identical proofs. Propositions 3.2
and 3.5 remain very similar. The non-zero cohomology groups are all shifted to the right
by ¢, though they are no longer 1-dimensional in general but depend on the restriction of f
to F. Write f; for the restriction of f to F, and put

2

"lF(f)g dfp c IF . ne—1°

which measures the multiplicity of this restriction. Then Proposition 3.2 becomes, with the
same hypotheses,
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0, if i£2b+c,

3.7 H'(Qy, df n) =
3.7 (2x,df A) {le(f) for i=2b+c,ifa>b+1.

The cohomology of the basic df A complex, given for F = 0 in Proposition 3.5, becomes

Me(f), f3+cLiZg2b—-14cand i—c is odd,
0 otherwise .

(3.8) H(Q,dfn) = {

The proofs of these are very similar to those of the corresponding F =0 statements, except
that the spectral sequence now degenerates at E, rather than E,. The E, consists now of
two horizontal complexes, each copies of the complex (H{o, (2;),dfr A). Since by hypothesis
Jfr has an isolated critical point at 0 we get that

ker [Hiyy (@)~ Hipy(@D] = Ap(f),

and elsewhere these complexes are exact, by a spectral sequence argument on the Cech
resolution of (2, df A), see Example A.6.

One still has 1,: H"*! —=» Hy unless a = b = 1. In this latter case there is a short
exact sequence
0 - M(f) > H""' " HI - 0.

Representatives of the non-zero cohomology groups of the basic df A complex can be
found as follows. Given f, define f’ by

f’(xsy’z) =f(X,y,Z)—f(0,0,Z)

with the usual splitting of the coordinates into x, y and z. Note that df' Av =dfAv for
ve Q5 (if we consider Qf as a subset of Qy).

Now, the restriction of f’ to F is identically zero, so by Lemma 2.5 there is a 1-form
o with

(@ =r".

Let, as usual, ® = da € @2, so 1,(w) = df’". The non-trivial representatives of H'(Qy, df A)
for i <n are given by

{dfavaet]i=1,2,...,b—1;v € #(f)}.

Remark 3.9 (Local Duality). Suppose F = 0 (the modifications for the general case
can be found easily). Using the Cartan-Eilenberg projective resolution of the complex
(2;,df A), together with local duality in the form of the existence of natural pairings
Ext(M, Q}) x H o, (M) — C, one can prove the existence of the following natural pairings:

For a + b:
HE Y QP x Hg P (™% - C,

H!xH} - C,
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for p=1,...,b—1.

For a = b:
Hy Q) x Hyp ?(y7?) - C,

for p=1,...,b—2, and a degenerate pairing on Hy with a one-dimensional null-space:
0 » Cw® » H} - (H)* - (C.o®)* - 0
where ()* represents the C-dual of a vector space.
For details on Cartan-Eilenberg resolutions, see [13], p. 74 or [14], Lemma 9.4.

The argument is briefly as follows. Denote the Cartan-Eilenberg projective resolution
of (y,df A) by P = (P°*"), so that for each p, the subcomplex (P?’*)is a projective resolution
of Qf. Now apply Hom (—, 27), and call the new complex Q = Q"’"; recall that Q7 is a
dualizing module on Y. The homology of the associated single complex is the HyperExt of
(£2y,df A). This homology can be computed via two spectral sequences.

First horizontal spectral sequence. Use the fact that the P’s are projective to see that
E, (Q) is isomorphic to the ©7-dual of E, (P), and the fact that it is Cartan-Eilenberg to
show that E}’*(P) is a projective resolution of Hf. Thus,

E?4 = Ept = Extt(H}, Q)

_ Hom(HE, C), if g=n,
0 otherwise .

First vertical spectral sequence. As the p-th column of P is a projective resolution of
QF, one has that EP'? = Ext?(2f, Q7). For ¢ = 0 this is just Q77 by Corollary 2.12, while
for ¢ >0 it is C-dual to the local cohomology group Hy; ?(©2f) by local duality. If the
original resolution P is written below the complex (£;, df A), then the picture is the same as
that in Figure 1 (in Section 2), with the stars representing the Q77 and the dots the C-
duals of the local cohomology groups.

E%1 is the same as EP'? for ¢ > 0 (though for a = b one needs to be careful), and
EP° = Hy~?. Comparing this with the results from the other spectral sequence, one sees that
all the higher differentials are isomorphisms (save that of Ext"~*(Qy, Q7) — Hy for a = b,
which must be injective). '

Comparing the limits of the two spectral sequences gives the desired result. In the case
that a = b, one obtains a 4-term exact sequence

0 - Hiy (@) - Hy > (H)* - Hy (@) - 0,

and one can identify this (or its C-dual) with the 4-term exact sequence given above.
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It would be interesting to find an explicit formula for these natural pairings. We hope to
return to these questions of local duality and the resulting natural pairings in greater detail
and greater generality at a later date.

4. Deforming the critical point
Let f be an invariant analytic function defined on an open set in Y, and define
M(f) = H" N (Qy dfn) = QY df nQ} .

This is a coherent sheaf defined on the domain of definition of f. It was shown in Section
3, that the maps 1, : QF — QF ! induce an isomorphism H"**(Qy, dfA) = H"(Qy,df A)
for n—c>1. For n—c =1 (i.e. a = b = 1) the map is surjective with kernel #(f), and
in this case the quotient space is smooth. Recall that 4 (/) is the multiplicity of the critical
point of the restriction of f to F; if ¢ =0 it is just a 1-dimensional space. Thus, for
n—c >1,

-(_2 Xn +1 - Q ;

A= gng = ey

Let £, be an invariant deformation of f, =f, with ¢€ S, a neighbourhood of 0 e C.
The purpose of this section is to show that .# (f) is a multiplicity of the critical point in the
sense that it is supported on the critical locus of f, (Lemma 3.1) and viewed as a sheaf over S,
A (f,) is locally free. However, there are some cases where f, can have a critical point but
M (f;) =0, as we shall see. In the case of real actions of C*, # does define a good
multiplicity in the sense that the contribution from generic critical points is one. It follows
from these results and Proposition 3.6 (4) that the other homology group depending on f,
H"(Qy, df A) also behaves well in a deformation. Note that if F < 0, the lower cohomology
groups #;(f) behave well in a deformation by the standard theory.

We need to consider sheaves of relative differential forms on X' x S and Y x S. These
can be defined as
QFxs
QFxsis = p—1°
dtAQFLs

The sheaves Q% /s and 2§, /s on Y x S are defined similarly.

Let F(x, {) be a C*-invariant analytic function defined on some neighbourhood of
(0,0) in X x S, and let f,(x) = F(x,t). Now, dF A : Q%55 = Q%x5s> and

. +1
dFA’Q#XS/S - Q}exsls.

We define #(F) by
M(F)i=1,[Q0%55/dF A Q5 551 5

where 7 : X x S — S is the cartesian projection. If n — ¢ > 1 then

MF) =1, [0 55/ AQYxds]
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(There should be no confusion arising from the two uses of the symbol F.)

Theorem 4.1. Let f be an invariant function with an isolated critical point at 0 €Y,
and let f,, t € S be an invariant deformation of f =f,. Then M (F) is a free Os-module.

Proof. We show that
@.1 0 » MF)—> HMF) > M(f) > 0

is exact, for then .# (F) is torsion free over S, and hence free. In the case that a=5b =1,
the quotient space is smooth, and it follows that 7, [Q,s,s/df A Q}<4s] is free by the
standard theory, and hence so is .#(F) (as the kernel of the map from one to the other is
a free 05 module of rank 1. From now on assume n — ¢ > 1.

For each p, the following is clearly a short exact sequence:
0 - Qfo/s —s Q)",XS/S - Qf - 0.
Since multiplication by ¢ commutes with dF A, it follows that
42) 0 > Qg5 dFA) — Qyxgss dFA) > (@,dfA) > 0
is exact.
Consider the long exact sequence of cohomology arising from (4.2):
0 — HO®yxsis) —— H°@yxsis) > HO@)) > H' @yesie) > -+
- H""Y(Q;) - M(F) —— MF) > H(f) - 0.
(Here H ‘(Q,'.xs,s) refers to the cohomology of the complex (2y s, dF A), etc.)
By Proposition 3.5 (and Remark 3.8 if ¢ # 0) one has exactness of
0 = H" '(Qy.55) — H" ' Qyxs59) = H 1) - 0.
(Note that in the case that ¢ + 0 and a = b + 1, we are using the exactness of
0 > Mp(F) > Mp(F) > M(f) - 0,

which follows from the standard theory as the space F is smooth.) The exactness of (4.1)
follows. O

Generic multiplicities. The theorem above states that when an invariant function f
with an isolated critical point is perturbed, the number of critical points in Y appearing in
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the deformation is equal to dim . .# ( /), provided local multiplicities are taken into account.
The local multiplicity of a critical point of f; at y € Y is of course given by dim. (.#(f)),).
It is therefore important to know what local multiplicities to expect for generic critical
points. The answer depends on the local geometry of ¥, that is, on the stabilizer of an orbit.

Proposition 4.2. The minimal multiplicity for any stratum of a real action is 1. The
minimal multiplicities for the strata of low codimension are as follows:

1. 1 for the open stratum;
2. 0 for the codimension 1 strata (i.e. the pseudoreflexion hyperplanes);

3. e —2 for the codimension 2 strata (where e is the embedding dimension of the quotient
singularity).

Proof. For the real actions, the result follows from Schwarz’ Theorem, given as
Proposition 1.6 above. 1. and 2. are straightforward, since at such points Y is smooth and the
modules QF are just the usual differential forms. Note that an invariant function with a
generic critical point at a pseudo-reflexion hyperplane is non-singular on the quotient space.

3. This follows from the proofs of Theorems 4.1 and 5.1 of Wall in [30], using
Q™/df A Q™! rather than ./ Jf, but first we must reduce to the case of a transversal to
the stratum.

This reduction proceeds as follows. Clearly, for a stratified critical point to be generic,
it is necessary that its restriction to the stratum be a non-degenerate critical point. One can
then apply the equivariant splitting lemma to write the function locally as a sum of a
non-degenerate quadratic form on the stratum and a generic function on a transversal to the
fixed point set invariant under the action of the isotropy subgroup. The multiplicity is then
the multiplicity of the restriction to a transversal.

Following Wall, let f(x, y) = x*+ yb. Then Q™/df A Q™! is the sum of a trivial re-
presentation and a free € G-module. On deforming f two types of critical point emerge from
the origin: those with trivial isotropy and those on the reflecting hyperplanes. By 2., the
critical points on the reflecting hyperplanes do not contribute to the multiplicity, so, as in
Wall’s proof, the effect of the deformation is to reduce 2™/df A Q™! by a number of free
C G-modules. Thus, for generic f we have, in Wall’s notation,

dim (@p/df A QF ) = 1+v5(f).

Furthermore, Wall shows (using Koushnirenko’s formula for Newton diagrams) that if G
is cyclic, then v¢(f)=e—3. O

If the C*-action is free outside £ then the multiplicity we have defined gives com-
plete information on the decomposition of a degenerate critical point under a generic per-
turbation. If, on the other hand, the action is not free outside # then it is also necessary to be
able to compute the number of critical points lying in any given fixed point subspace. By the
principal of symmetric criticality (see Section 1) it is enough to repeat the multiplicity
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computation for the restriction of f to each fixed point space V. However, in the real case
there is an easier method, namely factoring out .#(f) by the ideal (V) of functions
vanishing on V. Summing up in the real case, we have the following result.

Corollary 4.3. Let f be a function invariant under a real action of C* with an isolated
critical point 0, and let f, be a generic invariant deformation of f. Then the number of critical
points of f, emanating from 0 is equal to

dim A (f) = dimg[Oy/If ], ,

where Jf is the jacobian ideal of f, and the subscript 0 means the invariant part. Moreover,
the number of critical points of f, with isotropy group H is equal to

()
di X 1,
e [Jf +1 ]0
where 1 is the ideal of functions vanishing on Fix (H; C"*?1).

Proof. The first observation is that generic functions have non-degenerate critical
points. By the proposition above, these have multiplicity 1, and so dim .#( f) does indeed
count the number of critical points. Now, for a real action, the isomorphism Oy — Q¢ *?,
h— ho, with @ =dx, A ... Adx,Ady, A ... Ady,, is equivariant. Moreover, this iso-
morphism maps Jf to df A €. The first part follows.

The final part is proved using the Principle of Symmetric Criticality, as stated in
Lemma 1.4. For the multiplicity of the restriction f, is given by dim [0y /Jf)],, but

)Ll o).
Jfivle  LIfw+ 1) e LIF+HIV) o'

Finite extensions of C*. We consider briefly the effect of a finite extension of C* acting
on X = C"*! Let G be such an extension, so

1 >C*>G->T-1,

with I a finite group.

As before, let Y denote the quotient by C*, and Qf denote the C*-invariant p-forms.
Then I acts on ¥, and on the QF, the local cohomology groups computed in Section 2, and
so on. We denote the full quotient space by Y/I', the G-invariant forms by QZ, and the
G-invariant basic forms by Qf, .

Let f be a G-invariant function on C"*! having an isolated critical point on Y (or,
what is the same, on Y/I'). Then I' acts on the cohomology groups H'(Qy, dfA) and
H'(Ry,df A). For any G-invariant function f denote by C(f) the set of critical points of
fin Y. Now, I' acts on C(f) by permutations, and we denote the associated permutation
representation by [C(f)]. '
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Proposition 4.4. Let G act on C"*! as a real representation, and let f; be a generic
invariant deformation of f with f having isolated critical points on Y. Then there is an iso-
morphism of representations of I':

([CI=#4(f).

The action of I on the 1-dimensional groups H*(Qy, dfA) for k = 3,5,7,...,2b—1
depend on its action on the vector field 3 generating the C*-action, since H?* * ! is generated
by df A w*, and w is defined by df = iyw. Furthermore, by the results of Section 6, the
action of I' on the cohomology groups of the Milnor fibre of f in the quotient space are
isomorphic to its actions on the H¥.

Similarly, other results of Wall [29] and Roberts [21] generalize to this setting.

5. Equivariant vector fields and critical points

Liftable vector fields. The action of C* on X induces an action on @y, the ¢y-module
of analytic vector fields on X. The vector fields v satisfying Z,v = 0, those fixed by the
action, are called equivariant vector fields; they form an @y-module denoted @,. Clearly,

. 0 b 0 2 0
6o o= (Gezr)e(Qmhg)e(@er)

Any equivariant vector field on X defines a derivation of ¢, and so passes down to a vector
field on Y. It is well-known (and not hard to show) that such a vector field on Y is tangent
to the stratification by orbit type (see Section 1). This suggests defining the ¢y-module of
all vector fields on Y tangent to the stratification by orbit type, which we denote ©,. It
should be emphasized that this @, does not coincide with the usual module of vector fields
tangent to a variety, unless the stratification of Y as a quotient space is the same as its
logarithmic stratification.

There is a homomorphism p: @, — 6y, whose kernel consists of equivariant vector
fields tangent to the orbits. Thus ker p = ¢, 3. The question of whether p is surjective is a
‘lifting problem’, which, for reductive group actions, has been studied by G.Schwarz
[25].We begin this section by giving a more precise result in the case of C*-actions. We say
that a C*-action has the lifting property if p is surjective.

Theorem 5.1. A C*-action has the lifting property if and only if one of the following
conditions holds:

1. b>1;
2.a=b=1;
3. For a> b =1, there are no non-negative integer solutions r;, s to the equation,

=Y ni+s(-p,

Jj*i
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with s > 0 and at least one of the r;> 0. In particular, this condition holds if the sum of the
weights is zero.

Proof. 1t is enough to prove this for F =0 since the general case is just a product
of this case with a smooth space.

1. Consider the exact sequence of sheaves on Y
(5.2) 0> 0,9 >0, L2560 - & >0,

which defines the cokernel 4" consisting of non-liftable vector fields. We wish to find criteria
which ensure A4 = 0.

The first observation is that supp 4~ < F since outside of F the isotropy‘ is finite,
and by [3] and [25], we have that p is surjective off F. If A"+ 0 then it follows that
depth A" = 0, where by depth we mean »,-depth.

By (5.1) we have that
(5.3) depth @y = min {depth [Oy],,depth [Cx], } .

It now follows from Theorem 2.6 that depth @, = b. Clearly, depth @, > 0 since @, is
torsion free. Finally, depth 0, = codim,(F) = a + b — 1. Taking the Chech resolution of
(5.2) for the subset F of Y gives the following fact (Proposition A.2): if depth @, > 2,
depth @, > 1 and depth &, > 0 then depth A" > 0. Thus, if b > 1 then all these conditions
are satisfied, so indeed 4" = 0.

2. If a = b =1 then this follows from [25], Proposition 7.2 (or by direct calculation
as for case 3.).

3. The third case is proved in the same way that Wall proves it for a =2, b =1,
¢ =0 in [30], Example 2.3. (In fact Wall makes an error as he does not allow for the
possibility that the stratifications of Y = V/G and Y; = W/ H differ at the origin.) At the end
of Section 1, we note that if b = 1, the quotient Y is isomorphic to the quotient of X, by
Z/uZ, and their stratifications differ at most at the origin. Now, since Z/uZ is finite, it
follows that every vector field on the quotient Y, tangent to the stratification is liftable.
Thus we can represent @y, by equivariant vector fields on X;. Thus,

a i}
6, =P {x'é—)—c— rd)—4i= O(,u)} .

i=1 i

To obtain the vector fields @y on Y tangent to the stratification, we can use &y , but we must
ensure that the vector fields vanish at 0, thus

O, ={ve 6y, |r+0}.
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On the other hand,

: rsa
@x—@{x,"’a;i

i=1

rA) —4+su= 0} ® {x’y‘-?——
dy

(r,l)+(s—1)u=0}.

Using the same argument as Wall, we can ignore the last summand (because of the 1-
dimensional kernel of p). Then using x> (x,1) to identify X, with a subset of X (as in

Section 1), we see that v = x"

€ Oy lifts if and only if there is an s = 0 such that

0 . oo . .
x"y* £ € @y, thatis, (r,A) + sy = /1, Thus, it fails to be liftable precisely when the con-

gruence (r, 4) — 4; = 0(p) is satisfied by s < 0. That is, non-liftable vector fields correspond
to multiindices satisfying

A+ (=s)pu=4
with r + 0 and —s > 0, as was required. O

Multiplicity after Bruce and Roberts. In [7], Section 8, Bruce and Roberts consider
the multiplicity of critical points of analytic functions on quotient varieties. Their approach
is to work directly on the stratified quotient space Y; they show that critical points of the
function f correspond to intersections of graph (df) and LC ~ (Y), the logarithmic charac-
teristic variety of Y, and that the intersection multiplicity is given by dim. (0, /0y (f)). In
the case that the group is finite, they prove that LC ™ (Y) is a Cohen-Macaulay space, and
so deduce that intersection multiplicities are preserved under deformations. On the other
hand they point out that it is easy to find examples of reductive group actions for which
LC~(Y) is not Cohen-Macaulay. Such an example is provided by C* acting on C°*?
(a > 1) with weights (1,1, ..., 1, —1). The quotient space is then smooth with orbit type
strata Y., = C°\{0} and {0}. Thus LC~ (Y) consists of two transverse a-dimensional sub-
spaces of C2“ and is therefore not Cohen-Macaulay. Bruce and Roberts suggest that
LC™(Y) is Cohen-Macaulay for any real action of a reductive group.

It turns out that there are many instances of C*-actions for which LC ~ (Y) is indeed
Cohen-Macaulay, and not just the real actions conjectured by Bruce and Roberts.

We begin with an obvious result. Recall from Section 4 that by definition,
M(f)=Q"df A2y .

Proposition 5.2. Suppose that C* acts on C"*! and the sum of the weights is zero. Then
the two modules Oy] Oy (f) and M (f) are isomorphic.

Proof. There is always an isomorphism of Ox-modules 0y — Q¢*! given by multi-
plication by the (n + 1)-form @ = dx, A ... A dz,. Furthermore, for any function f, one
has, wJ(f) = df A 2}, where J(f) = @4 (f) is the jacobian ideal generated by the partial
derivatives of f.
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Suppose now that the sum of the weights is zero, so that w is C*-invariant. Then the
isomorphism is also an isomorphism of C*-modules. Taking invariant parts, it follows that
0.0y = Q3% and 0.0,(f) = df A @} for an invariant function f. Thus,

M(f) = O Ex(f).

Finally, it follows from Theorem 5.1, that if the sum of the wgights is zero then

&(f)=6y(f). O

Corollary 5.3. If the sum of the weights is zero, and f has an isolated critical point at
0, then Oy /Oy (f) deforms flatly under any invariant deformation of f. 0O

Corollary 5.4. If the sum of the weights is zero then the logarithmic characteristic
variety LC ™ (Y) of the quotient space is Cohen-Macaulay.

Proof. First let f be an invariant function with an isolated critical point in Y, and
let f be an extension to an open set in C' (the ambient space of ¥). Consider the family of
functions parametrized by a € (C')* defined by 7, (u) = f(u) — au. Now define a map

&:T*C' - (CYH*,
(u,a) > df,(w)=df(u)—a.

For each q, the intersection &~ *(a) " LC ~ (Y) is finite (by the preparation theorem, since
S/ has an isolated critical point at 0). By Corollary 5.3 above, the restriction of & to
LC™(Y) is flat. Consequently, LC~(Y) is Cohen-Macaulay. O

Another case where LC ™ (Y) is Cohen-Macaulay occurs when Y is isomorphic as a
stratified variety to a finite quotient, see the examples in Section 1. In general, we do not have
necessary and sufficient conditions for LC ™ (Y) to be Cohen-Macaulay. Indeed, the only
general negative result we have is the following.

Proposition 5.5. Consider the action with weights (1,...,1,—1,...,—1). Then
LC™(Y) is Cohen-Macaulay if and only if a = b.

Proof. Write M = M, , for the space of a x b matrices. The quotient space Y is iso-
morphic to the subvariety of M of matrices of rank at most 1, which has an isolated sin-
gularity at 0. Thus LC ™ (Y) < T*M has two components, one is T3 M, the fibre over the
zero matrix, and the other is the closure of the conormal bundle over the smooth part. The
conormal space over the matrix Q € Y consists of matrices P € M for which P'Q = QP' = 0.
These two components are of dimension ab = dim M, and each is Cohen-Macaulay. Their
intersection is the subset of T, M =M of matrices P of rank at most b — 1, which has
codimension a — b + 1 in each of the components. At a generic point of the intersection, the
variety is just a union of two smooth subspaces intersecting along a subspace of codimension
a— b + 1. At such a point, the variety cannot be Cohen-Macaulay unless they intersect in a
hypersurface, i.e. unless a =b. 0O .

Remark 5.6. There are examples of ¥ for which LC ~ (Y) is Cohen-Macaulay which
are not accounted for by the results above. For example, we found using the computer
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package Macaulay [2] that for the action with weights (1,1, —1, —2) LC" (Y) is Cohen-
Macaulay, while for the action with weights (1,1, —1, —3) it is not.

Remark 5.7. In the situation of Proposition 5.5 with a =2, b =1, one sees that
LC™(Y) is the union of two transverse 2-planes in C* which is not Cohen-Macaulay.
However, it is the quotient by C* of a Cohen-Macaulay space of dimension 3 in €3, given
by equations,

hix +hx, =Ly=04Ly=0,
where C* acts on (x4, x,, ,/,, [,)-space with weights (1,1, —1,0,0). (This space is in fact
the appropriate Z defined in [7], Section 8.)
6. The quotient Milnor fibre
Let f:(Y,0) — (C,0) be an invariant function germ with isolated singularity, and let
S U, = S be a representative (with U, = Y n B,, the intersection of ¥ with the ¢-ball in the

ambient space of Y, and f non-singular on U\{0}). For any 7€ S one can define the fibre
Y, =f"(t) = U. We call ¥, the quotient Milnor fibre as it is the quotient of

AR GIaE AR (/AXSD ¢
by C*. (We do not assume F = ( in this section.)

Theorem 6.1. ¢ and ne R, can be chosen sufficiently small so that for any te D, (the
disk in C centre 0 and radius n), and for each i 2 1,

dim H'(Y,, C) = dim  H*1(Q;, df n).

This agrees with the classical case where Y is smooth. However, in the smooth case
H*Y(Qy,dfA) =0 for i+1<dimY.

In the classical case of an isolated singularity on a smooth space, one knows that the
Milnor fibre is homotopic to a wedge of spheres of middle dimension. In the present case this
is clearly not so, though it seems likely that Y; is homotopic to a wedge of spheres of middle
dimension and the generic hyperplane section:

u
Y,~\/ S""'vL,
i=1

where L, is the Milnor fibre of a generic linear function L on Y. We conjecture that this is
the case at least if ¥ has an isolated singularity*), and that following Funar [11] the integer
cohomology of the Milnor fibre is torsion free.

*) Added in proof. This has recently been shown to be true by D. Siersna (A Bouquet Theorem for Milnor
Fibres, in preparation).
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The proof of this theorem follows closely the proofs of Brieskorn [6] and Malgrange
[18]. There are also discussions of this theorem in [297] and [26] for the case that the group
is finite and the function f on X has an isolated critical point.

We will need a (well-known) Poincaré Lemma for the basic forms.
Lemma 6.2. The complex of sheaves (£, d) is a resolution of the constant sheaf C, .

Proof. Away from Fc Y this follows from the Poincaré lemma for finite groups
by the slice theorem.

On F a different argument is needed. Let z € Fand let U be a contractible Stein neigh-
bourhood of z in Y. First observe that (&;(n~1(U)), d) is acyclic by the usual Poincaré
lemma and the fact that n~!(U) is contractible Stein. Then by taking invariant parts we
deduce the acyclicity of (2;(U), d).

Consider now the double complex

Kp,q= !—pr—q(U)’ ifp:*:q’
m,(U), ifp=gq,

where 2, (U) is the ideal of functions on U vanishing at z. The maps on this complex are
d: KP?—» KP*1%and 15: KP4 — KP9*1, Since (€, (U), d) is exact, the homology of the
total complex is zero. Now the spectral sequence commencing with iz, degenerates at E,
to give

H*(&,d), ifqg=0,

Epvq = EP9 = X
® 2 {0 otherwise .

The result now follows. O

As usual, define the sheaf of relative differentials as
QF
AN

We use d to denote both the absolute exterior differential on €y as well as the relative
exterior differential on £y 5. As a preliminary result, we need the following.

Qf =

Lemma 6.3.
HO(QY./S’ d) =f—1@s’

Hi(gy./s, d)IY\{O} = O for i> 0 .

Proof. This follows from the Poincaré Lemma 6.2, and the exactness of (£;,df A)
outside 0, Lemma 34. 0O

Proposition 6.4 (Brieskorn [6]). For p 2 0,

(1) H?(f, 55, d) is Os-coherent ;-
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(2) H?(f, 25, d)o = H?(Qy /5.0, d);
(3) For t+ 0, H?(f,y5,d), = H?(Y,,C) ®c s,y

Proof. It follows from Lemma 6.3 that (y 5, d) is a concentrated complex in the
sense of [27]. The three statements are general properties of concentrated complexes, and
as such are proved as Theorem 1 and Propositions 1 and 2 of [27]. O

The coherent sheaf #°? := H?(f, s, d) restricts on S\ {0} to (the sheaf associated to)
the bundle of p-th cohomology groups of the fibres Y,. Corresponding to parallel trans-
port of cohomology classes there is a connexion

. 14 ) 4
Vi o » oo

the so-called Gauss-Manin connexion. This connexion does not extend to a connexion over
the zero stalk H#{? of J?; it is necessary to map i to a slightly larger module.

In order to deal with such a problem, Malgrange [18] introduced the notion of (E, F)
connexion, where E c F are finitely generated @ ,-modules with F/E torsion, and
D: E — F is a C-linear derivation. That is, for ee E and he 05,

D(h.e) = 52—}: .e+h.D(e) .

There is an index theorem for such a set-up [18], Theorem 2.3, which states that, with
(D; E, F) as above, D has finite dimensional kernel and cokernel and

dim ker (D) — dim.Coker (D) = rk(E) —dim(F/E).
We apply these ideas to the following pairs of s ,-modules and derivations:

- _{weQjldoedfr Q7]
Ei—H ('QY/S.09d)_ dQ,‘}"+df/\ ‘Qli’—l ’

(where Q, now means germs at 0 rather than sheaves) and

P {weQ}Idedw‘=0}
R T SE TN T

Clearly E, c F,. The derivation is
o,:E; - F,
W n

where 7 satisfies dw = df A 1.

Proposition 6.5. 1. 9, is an isomorphism, and

2. F,/E, 4, H*Y(Qy,df A) is an isomorphism.
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Proof. 1. First we show that 4, is well-defined. Let w € ; represent [w] € E,. Then
dw = df A n for some n € Q}. This 5 is determined up to elements of ker [df A : Q] — Q}*1],
which are zero in F;, because by Proposition 3.6,

dA 1+ dfaQi ' =dQi™  + ker[df n: Q) - Q*'].

Changing the representative of [w] by da + df A B changes n by —dp which is also zero
in F;. Thus 0, is well-defined.

Suppose J,[w] = 0, that is dw = df An where n = da + df A B for some a, B. Then
dw = df A do for some a, so w = df A a + dy by the Poincaré Lemma 6.2. This means that
[w] =0in E,

Let n represent [n] € F;, so d(df An) = —df A dn = 0. Using the Poincaré lemma we
see that df A = dw for some w € Q}. This proves the surjectivity of J,. '

2. Now,
FJE = {weQ}|df ndo = 0}
P (o e QildoedfanQi™1})’

so the statement is obvious. O
Proof of Theorem 6.1. Firstly, Proposition 6.4 states that for ¢ + 0,
- tk(E) = dim.(H'(¥,, C)) .
Secondly, using Proposition 6.5, Malgrange’s index theorem applied to (0,; E;, F;) gives
tk(E) = dim (H'*1(@,df A)). O
Remark 6.6. Exactly as in [18], one can show that the E; and F, are free. For

i=2,4,...with i<n—1and ¢ = 0 they have rank 1, and representatives of generators of
these modules are as follows.

2 = %fad(;) A},

5) A (do)* 1,

¢2k=%f2d<f

where 1;(x) = f as in (3.2). One checks that

0i825 = P2y »

de,, = df A (da)*.



Montaldi and van Straten, Quotient spaces and critical points 93
It follows that ¢,, and ¢,, are generators of E,, and F,, respectively. Furthermore
10,65, =38y,

so 0, is regular singular, and the monodromy on the cohomology groups with i <n —1 is
trivial.

If F # 0, then these modules have rank dim,.#;(f), and generators are given by a
construction similar to that in Remark 3.8, namely by taking the exterior product with v as
v varies over #;(f). In this case the monodromy of the low dimensional cohomology
groups will be just the monodromy associated to the restriction f; of f to F.

Remark 6.7. One can introduce the equivariant version of the Gauss-Manin system
as the cohomology of a complex analogous to the one in [20], p. 158, or [24]. This equi-
variant version is the total complex of a triple complex with terms

Vq,r ~q+r
CP'] _Q{'I ,

and differentials d, 14, and df A. To be more precise, we consider (24 [«, D], d), where u
and D are commuting symbols and where

dw.u*.D' = do.u*. D'+ yw.u** 1. D! — df A w.u*. D'
Because d, 1, and df A pairwise anticommute we have d? = 0.
On this complex, one has three additional operators u, ¢ and 0,:

u.ow.u*.D'=w.u**1.D",
tw.u*.D' = fo.u*.D' —lo.u*.D' 1,

0,.0.u*.D' = w.u*.D'*1!,

These commute with d, and 8,7 — td, = 1, whereas u commutes with ¢ and d,. The coho-
mology & gets the structure of a 2 [u]-module, where 2 = C{t, 0,}, and it is not hard to see
that in fact ¢ is a coherent 2 [u]-module.

There is a natural filtration, called the Hodge filtration, F" on this triple complex
with terms

Fp-l — Z Q}‘J+k—l+mul.Dm.
k,l,mz0

One has thatd F? ! c FP, so F' induces a filtration on J#. It seems that this F' can be used to
define a mixed Hodge structure on H" (Y,, C) in a manner completely analogous to [24]. We
hope to elaborate on this on another occasion.

Chern class of the quotient map. We end this section with a discussion of various
closed 2-forms on the quotient space Y and the Milnor fibre Y,, and the relationship between
them. .

7 Journal fiir Mathematik. Band 437
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With the usual notation, we have f= 1,0 and w = da; consequently, there is the
fundamental “Hamiltonian™ relationship

6.1) df = —1,0.

Example 6.8 (Symplectic Reduction). In symplectic geometry, if w is a symplectic
form, this equation is used to define the Hamiltonian f of the symplectic vector field 9. Note
that if the invariant form w is non-degenerate, then by Darboux’ theorem, it can be written
in the form w = Y dx;Ady,;, and so the C*-action must be real since each “monomial
form” dx; A dy; must be invariant. (In other words, w defines an equivariant isomorphism of
C"*! with its dual, which implies that the action is real.)

The quotient Milnor fibres Y, are in this case the reduced spaces for the C*-action.
The restriction of w to X, is a basic form on X,, i.e. o,:=i*w € QZ, where i, : X, & X is
the inclusion (we also write i,: Y, ¢, ¥). Thus any statements about quotient Milnor fibres
can be viewed as generalizations of statements about reduced spaces in symplectic geometry.
A particular result is the following:

Let C* act symplectically on the symplectic space (X, w) with an isolated fixed point at
0, and let f be the Hamiltonian, with f(0) = 0. Then for ¢ 3 0, the cohomology of the
reduced space Y, is given by

) C, ifi£n—2is even
H'(Y,, C) = ’ = ’
. (¥, €) {O otherwise .
This is clear from Theorem 6.1 and Example 3.7, since the relation f = iga implies that f
is homogeneous of degree 2, and (6.1) implies that it has an isolated critical point.

Returning to the general (non-symplectic) case, consider the meromorphic 1-form
o' = a/f. Thisis an invariant form with poles along X, = { f = 0}. Since it satisfies ;' = 1
off X,, it is a connexion 1-form for the principle fibration n: X, , = Y, ,, and o' = dao’
is a curvature 2-form. It follows that the Chern class ch of this fibration is given by the
cohomology class [w'] € H*(Y, o, Z) = H*(¥, 4, C). Notice that ' is indeed a basic form
onvy,,, as

130" = 1gdo’ = —d(13¢’) = 0.
It has a pole of order 2 along X, (or Y,).

Now, i*w’ =i*da’ =di¥(a/f) = (di*a)/t = i*w/t. Thus we have the following
result on the variation in the cohomology class of w,, similar to the theorem of Duister-
maat and Heckman [10], Theorem 1.1:

Theorem 6.9. Let t + 0 and suppose w € 22 is a closed form satisfying (6.1) where f
has an isolated critical point on Y. Then the cohomology class defined by w, and the Chern
class ch of the fibration X, —Y, (which is independent of t) are related by

[w] = tch.
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These forms are also related to the generators of E, and F, given in Remark 6.7:
1
[82] =z f 3 ch ’
6
1 2
[$,] =5 f*ch.

Remark 6.10. There is no basic form 7 € © (defined on a neighbourhood of 0 eY)
with the property that the restriction of n to Y, is w,, for otherwise df A n = df A @, but
df A w is non-trivial in H>(Qy,df A), by Proposition 3.6. However, tw, = i*(fw) is the
restriction of the basic form f2w@’ = fw — df A a. This is of course consistent with the fact
that the cohomology group H?(Qy,df A) is killed by my and fe mey.

As a final observation, note that the “reduced form” w, can be obtained from the
special form df A w by taking residues:

dfno
W, = RCSU-__.,) <7—:;‘) .

A. Cech complexes and local cohomology

In this appendix, we describe a complex associated to any R-module M, and any finite
set of functions @ = {¢,, ..., ¢,} in R. The main property of this complex is that it computes
the (algebraic) local cohomology of M along Z = Z, = V(I), where [ is the ideal generated
by the ¢,. See Remark A.7 for why the algebraic cohomology is sufficient for our pur-
poses.

Let X be a space, = {U,} an open cover of X and & a sheaf on X. Associated to
this data there is the complex C' (%, ) of alternating Cech cochains:

Cp(%s ‘g;) = @ F(Uio ..... ip? ‘g;) = ‘g:lo.....ip ’

i0<"‘<ip i°<...<ip

for example, see [4].

In the case that the U, are ‘sufficiently small’ this complex can be used to compute
H(X, #). Exactly what ‘sufficiently small’ means depends on the context. In the topo-
logical case, the U; would have to be contractible and # constant; in the analytic category
U, would have to be Stein and & coherent; in the algebraic category, the U; would need to
be affine and & quasi-coherent.

Thus, if X = Spec (R), # = M where M is an R-module, and @ = {¢,, ..., ¢,}, then
we can form a covering of X \Z, where Z = V (I) as above, by the open sets U; = Spec(R,,),
where R, is the localization of R with respect to the multiplicative set generated by ¢, that
is R, = R[¢~']. Thus

CP (¥, F) = DM,,
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where M, = R, ® M. As all the U, are affine, we have
HY(X\Z,#) = H?(C*(¥, ¥F)).
In this setting, the local cohomology groups [12] sit in exact sequences:

0 » HY(M) » M - H°(X\Z,M) - H}(M) - 0,
A.D)
0 » H(X\Z,M) —=5 H*'(M) - 0 fori>0.

In order to perform calculations easily in local cohomology we have found it con-
venient to modify the notation as follows. Consider the two-term complexes,

K;=K,(R,®)=[R - R, c]],
with R in degree 0 and R, in degree 1. For any R-module M define
CMP)=C,M=K QK,® QKM
where all tensor products are over R, and M is considered as a complex concentrated in
degree 0. The symbols c; are used to make a distinction between elements of R and their

images in R,,. In other words, it helps keep track of the Cech cover. We let the c; anti-
commute, so

CPM,0)= P M, 0,1 s
and the differential is just

c=(c;+ " +¢)A:CP(M,d) - CP*Y (M, D).
Thus, for example, C°M = M and C'M = P M[¢; ']c..
i=1

The complex €' (M, ®) is isomorphic to the ordinary Cech complex C" (M, %) with
index shifted by 1, and augmented by the module M in degree 0. These constructions lead to
the following resuit.

Theorem A.1. Let R be a commutative ring, M an R-module and ® = {¢,,..., $,} a
subset of R. Let Z = V (I), where I is the ideal generated by {¢,, ..., $,}. Then -

HiM)= H(C,¢).
For more background information, see the book of J. Strooker [28].

Consider a complex (%) of sheaves on X:

(A.2) 0 &F > F > ...>oF > F -0,
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and assume that the homology of this complex is supported on a closed subset Z of X.
Associated to such a complex is the Cech complex over (%)) (with respect to Z), which is
defined as follows. Let & = {¢,,...,¢,} define Z, and consider the Cech complexes
C; %, = C' &, for each i. These form a double complex, K? = C4(&, _ BE

0> C% > CF_, - > CF - C'F -0

1 i T T

0 — Cr—lg,; - ér—-lg,;l_.l T Cr—-l.g—l - (‘fr—l% 50

1 1 1 1
1 i 1

0> C'&% - C'&F_, » - > C'#F - C'% -0

T

Proposition A.2. Let (#.) be a complex as in (A.2) with homology supported on Z.
Then there is a spectral sequence whose E, term is
EY = H}(Z,_,)

and which converges to

qu___ Hn—p(ﬁ)9 l:/‘q=0’
© 0, if g>0.

Proof. All the rows of the double complex K*’* except the bottom one are exact
because #; is exact outside Z. Taking the horizontal homology we get H,_ (%) along the
bottom row, and zeros above. Taking first vertical homology we pick up H$(#,_,)as E;. O

Corollary A.3 (Acyclicity lemma). Suppose that the complex (A.2) is exact outside Z.
If depth, &, = i for all i, then the complex is acyclic (that is, H,(#.) = 0 for i > 0).

Lemma A4, Let X=X, X X,,andletZ, c X,and Z,c X,,withZ =2, X Z, c X.
Suppose Z, is a sheaf on X, and let F = #, @ &, be the tensor product sheaf on X (in the
appropriate category), then

Hy(F)= D H;,(#)QHy,(F).

i+j=k
Proof. Consider Cech complexes C; (#,) and C; (%,). Then
C1(F)=C3,(F) ® Cy, (%)

is a Cech complex for Z, x Z,. The lemma follows from a spectral sequence argument on
the double complex K?? = C%,(#;) ® C§,(#,), as the higher differentials all vanish. o
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Example A.5. We derive the local cohomology groups Hi.(C[x,, ..., x,]), where
C"” = C" x C*. First we calculate H«,)(C [x]) in one variable, and then proceed by induc-
tion using Lemma A.4. For any set of coordinates on C” say {x,, ..., x,} define

A(xl,...,x,)=x Cix;Y...,x 1.

1 o0 Xy

(4 is for ‘antiworld’.) To find H o, (C [x]), we use the cover with one open set U = C \{0},
and function ¢ = x. The Cech complex is just

0 - C[x] » C[x,x *]c - 0
and so H{%}(C[x]) =0, and H{{,}(C [xXD=Clx,x ']/C[x]c=x A(x)c.

Then, by induction, using Lemma A.4, we find that H{"o}(C[xl, s X, ) =0 for
i<r, and

Hgp(Clxy, ..o x, D= A(xy, ..., X)c A . AC,.
Finally, by Lemma A.4, we get that

; Ay o s X))@ Clx, iy -5 X JCiA oo A, Ifi=r,
HC'(C[xla . ’xn]) { ( ! ¢ [ !t ] ! :
otherwise .
Example A.6. Suppose f: C" —» C has an isolated critical point at 0. Then the
complex (2., df A) induces a complex (Hf,(Q¢n), df A). The cohomology of this com-
plex is given by

o QnJdfA@rsY, if i=0,
H (H{O)(QC")’ df/\) = {O ¢ € otherwise .

This is seen by taking the Cech resolution A** of the (Q., df A ) complex. The first
horizontal spectral sequence degenerates at E, to give

H™(4,D) = Q1./df A Q27 1,

and H'(4, D) = 0 for i #+ n. On the other hand the first vertical spectral sequence degen-
erates at E, to give the cohomology groups H "(H{'{,} (Qcn), df A).

Remark A.7 (Algebraic local cohomology applied to coherent analytic sheaves). Our
applications of local cohomology are to analytic rather than algebraic sheaves. Nonetheless,
the results remain valid as all the sheaves are coherent, and algebraic local cohomology of
coherent analytic sheaves is a well-defined functor. For example, for the acyclicity lemma,
if a complex of coherent sheaves is exact off a subvariety Z then its cohomology is annihilated
by a power of the ideal defining Z, and consequently it is enough to consider algebraic local
cohomology.



Montaldi and van Straten, Quotient spaces and critical points 99
References

[11 M. Atipah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28.

[2] D. Bayer and M. Stillman, Macaulay, Version 3.0 (beta), 1989. Available by anonymous ftp from
zariski.harvard.edu.

[3] E. Bierstone, Lifting isotopies from orbit spaces, Topology 14 (1975), 245-252.

[4] R. Bott and L. Tu, Differential forms in algebraic topology, Berlin— Heidelberg—New York 1982.

[5] J.-F. Boutot, Singularités rationelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), 65—68.

[6] E. Brieskorn, Die Monoromie der isolierten Singularititen von Hyperflichen, Manuscr. Math. 2 (1970),
103-161.

[7] J.W. Bruce and R. M. Roberts, Critical points of functions on analytic varieties, Topology 27 (1988), 57-90.

[8] R.-O. Buchweitz and G.-M. Greuel, The Milnor number and deformations of complex curve singularities,
Invent. Math. 58 (1980), 241-281.

[9]1 I Dolgachev, Weighted projective varieties, Lect. Notes Math. 956 (1982), 34-71.

[10] J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced
phase space, Invent. Math. 69 (1982), 259-268.

[11] L. Funar, Homology and Cohomology of Weighted Complete Intersections, Preprint, Institutul de
Matematica, Bucharest 1990.

[12] A. Grothendieck, Local cohomology, Lect. Notes Math. 41, Berlin—Heidelberg—New York 1967.

[13] R. Hartshorne, Residues and duality, Lect. Notes Math. 20, Berlin—Heidelberg—New York 1966.

[14] P. Hilton and U. Stammbach, A course in homological algebra, New York-Berlin—Heidelberg 1971.

[15] M. Hochster and J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-
Macaulay, Adv. Math. 13 (1974), 115-175.

[16] G. Kempf, The Hochster-Roberts theorem of invariant theory, Mich. Math. J. 26 (1976), 19-32.

[17] D. Luna, Slices étales, Bull. Soc. Math. France, Mém. 33 (1973), 81-105.

[18] B. Malgrange, Intégrales asymptotiques et monodromie, Ann. scient. Ec. Norm. Sup. (4) 7 (1974), 405-430.

[19] I. Naruki, Some remarks on isolated singularities and their application to algebraic manifolds, Publ. RIMS 13
(1977), 17-46.

[20] F. Pham, Singularités des systémes différentielles de Gauss-Manin, Boston—Basel-Stuttgart 1979.

[21] R. M. Roberts, Equivariant Milnor numbers and invariant Morse approximations, J. Lond. Math. Soc. (2) 31
(1985), 487-500.

[22] R.M. Roberts, A note on coherent G-sheaves, Math. Ann. 275 (1986), 573 582.

[23] R.M. Roberts, Characterizations of finitely determined equivariant map germs, Math. Ann. 275 (1986),
583-897.

[24] J. Scherk and J.H. M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fibre,
Math. Ann. 271 (1985), 641-665.

[25] G. Schwarz, Lifting smooth homotopies of orbit spaces, Publ. Math. Inst. Hautes Etudes Sci. 51 (1980),
37-135.

[26] M. Sebastiani, Sur les points fixes des automorphismes des fibrés, Math. Ann. 248 (1980), 267-273.

[27] D. van Straten, On the Betti numbers of the Milnor fibre of a certain class of hypersurface singularities, Lect.
Notes Math. 1273 (1987), 203-220.

[28] J. Strooker, Homological questions in local algebra, L.M.S. Lect. Notes 145, C.U.P. (1990).

[29] C.T.C. Wall, A note on symmetry of singularities, Bull. Lond. Math. Soc. 12 (1980), 169-175.

[30] C.T.C. Wall, Functions on quotient singularities, Phil. Trans. Roy. Soc. Lond. (A) 324 (1987), 1-45.

Département de Mathématiques, Université de Nice, Parc Valrose, F-06108 Nice
Fachbereich Mathematik, Universitit Kaiserslautern, E. SchrodingerstraBe 48, D-W-6750 Kaiserslautern

Eingegangen 7. November 1991, in revidierter Fassung 25. Juni 1992






	Quotient spaces and critical points of invariant functions for C*-actions.  

